bolha.us is one of the many independent Mastodon servers you can use to participate in the fediverse.
We're a Brazilian IT Community. We love IT/DevOps/Cloud, but we also love to talk about life, the universe, and more. | Nós somos uma comunidade de TI Brasileira, gostamos de Dev/DevOps/Cloud e mais!

Server stats:

253
active users

#distributions

0 posts0 participants0 posts today
Miki :rstats:<p><a href="https://techhub.social/tags/30DayChartChallenge" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>30DayChartChallenge</span></a> Día 12: Gov Data Day! 🏛️ Explorando la distribución del spread 10Y-2Y del Tesoro USA (datos de FRED desde 1976).</p><p>Este histograma/densidad va más allá del valor diario: muestra la *probabilidad* histórica de cada nivel del spread. ¡Clave para entender expectativas económicas!</p><p>Puntos clave:<br>* Modo principal &gt; 0 (curva normal es lo más común).<br>* ¡La inversión (&lt;0, línea discontinua) tiene una probabilidad no trivial! ⚠️ Es la famosa señal pre-recesión. La distribución nos dice cuán "normal" es esa señal en perspectiva histórica.<br>* La forma general revela info sobre la dinámica de tipos.</p><p>Una visualización sobre la estructura probabilística de un indicador líder fundamental.</p><p>🛠️ <a href="https://techhub.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://techhub.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a> <a href="https://techhub.social/tags/quantmod" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantmod</span></a> <a href="https://techhub.social/tags/grid" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>grid</span></a><br>📂 Código/Repo: <a href="https://t.ly/0RDmK" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">t.ly/0RDmK</span><span class="invisible"></span></a></p><p><a href="https://techhub.social/tags/Day12" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Day12</span></a> <a href="https://techhub.social/tags/Distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Distributions</span></a> <a href="https://techhub.social/tags/datagov" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datagov</span></a> <a href="https://techhub.social/tags/dataviz" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataviz</span></a> <a href="https://techhub.social/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataVisualization</span></a> <a href="https://techhub.social/tags/YieldCurve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>YieldCurve</span></a> <a href="https://techhub.social/tags/InterestRates" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>InterestRates</span></a> <a href="https://techhub.social/tags/Economics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Economics</span></a> <a href="https://techhub.social/tags/Finance" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Finance</span></a> <a href="https://techhub.social/tags/Recession" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Recession</span></a> <a href="https://techhub.social/tags/DataAnalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataAnalysis</span></a> <a href="https://techhub.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ggplot2</span></a></p>
LinuxNews.de<p>ParticleOS – ein systemd-Betriebssystem<br><a href="https://linuxnews.de/particleos-ein-systemd-betriebssystem/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">linuxnews.de/particleos-ein-sy</span><span class="invisible">stemd-betriebssystem/</span></a> <a href="https://social.anoxinon.de/tags/systemd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>systemd</span></a> <a href="https://social.anoxinon.de/tags/poettering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>poettering</span></a> <a href="https://social.anoxinon.de/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://social.anoxinon.de/tags/linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linux</span></a></p>
sTiKyt :archlinux:<p><a href="https://mastodon.social/@themaxpearce" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@themaxpearce@mastodon.social</a><span> I use both, to be honest.<br><br>I always use Debian at work or for personal projects that support it.<br><br>However, I also have Arch on my personal PC.<br><br>The reason for that is I feel Arch is the perfect home desktop OS. It’s easy to control, simple, has the AUR, and always provides the latest package versions. Many people assume Arch would be unstable because it uses the latest software, but in reality, it works well 99% of the time. That remaining 1% usually involves minor issues that are easy to fix. And even if something is difficult to troubleshoot, it’s a great learning experience—so next time, it won’t be as hard.<br><br>Meanwhile, Debian is extremely stable and will remain so as long as nothing is severely broken or misconfigured. </span><a href="https://sharkey.stikyt.com/tags/debian" rel="nofollow noopener noreferrer" target="_blank">#debian</a> <a href="https://sharkey.stikyt.com/tags/arch" rel="nofollow noopener noreferrer" target="_blank">#arch</a> <a href="https://sharkey.stikyt.com/tags/linux" rel="nofollow noopener noreferrer" target="_blank">#linux</a> <a href="https://sharkey.stikyt.com/tags/distributions" rel="nofollow noopener noreferrer" target="_blank">#distributions</a></p>
Thor A. Hopland<p>It there's one thing I know, it's that <a href="https://snabelen.no/tags/linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linux</span></a> <a href="https://snabelen.no/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> that are community driven turn out to be the most reliable. My current go to for regular users is <a href="https://snabelen.no/tags/Fedora" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fedora</span></a>, because it is a solid distribution that's cutting edge and it's designed by the community. </p><p>I can't say the same for <a href="https://snabelen.no/tags/NixOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NixOS</span></a>. The amount of internal fragmentation and in fighting is too damned high, and there is possible conflict of interest that sits like an elephant in the room. </p><p>So I'm thinking... I might make a switch soon.</p>
Ketata Mohamed 🐧💻🎮<p>hi,<br>I have a little question: I have a <a href="https://mastodon.tn/tags/MiniPC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MiniPC</span></a> <a href="https://mastodon.tn/tags/B_MAX" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>B_MAX</span></a> <a href="https://mastodon.tn/tags/B1Pro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>B1Pro</span></a> and not all <a href="https://mastodon.tn/tags/Linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Linux</span></a> <a href="https://mastodon.tn/tags/Distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Distributions</span></a> can even display the <a href="https://mastodon.tn/tags/GUI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GUI</span></a>, thus far, I successfully tested <a href="https://mastodon.tn/tags/SnowflakeOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SnowflakeOS</span></a> , <a href="https://mastodon.tn/tags/EndeavourOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EndeavourOS</span></a> and <a href="https://mastodon.tn/tags/LinuxMint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LinuxMint</span></a> , however, the regular <a href="https://mastodon.tn/tags/NixOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NixOS</span></a> and <a href="https://mastodon.tn/tags/SyphaxOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SyphaxOS</span></a> did not work<br>it goes without saying that winlol works, 10 and 11<br>what could be the cause?</p>
Thor A. Hopland<p>"You should just use <a href="https://snabelen.no/tags/Ubuntu" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ubuntu</span></a> because it's the easiest one" - this is propaganda for <a href="https://snabelen.no/tags/Shuttleworth" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Shuttleworth</span></a> and tells me you haven't tried any other distro - or that you use <a href="https://snabelen.no/tags/Arch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arch</span></a>.</p><p><a href="https://snabelen.no/tags/LinuxMint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LinuxMint</span></a> is fantastic still, <a href="https://snabelen.no/tags/Fedora" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Fedora</span></a> is my go to recommendation, but with <a href="https://snabelen.no/tags/uBlue" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>uBlue</span></a> and <a href="https://snabelen.no/tags/Bazzite" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bazzite</span></a> we see a new era of usability focused <a href="https://snabelen.no/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a>.</p><p>Add to that the fact that <a href="https://snabelen.no/tags/snaps" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>snaps</span></a> are a centralizes repository with no third party vendors, and you've got a <a href="https://snabelen.no/tags/vendorlockin" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vendorlockin</span></a>.</p><p>Ubuntu is the <a href="https://snabelen.no/tags/anticonsumer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>anticonsumer</span></a> distribution as a result.</p>
TUXEDO<p><span class="h-card" translate="no"><a href="https://tilvids.com/video-channels/thelinuxexperiment_channel" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>thelinuxexperiment_channel</span></a></span> Linux Experiment had asked you, what's your favorite Distros? <br>You've also voted for TUXEDO OS. 🤗</p><p><a href="https://tilvids.com/w/f5955f2e-f110-42bf-a301-8d3a75549e33" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tilvids.com/w/f5955f2e-f110-42</span><span class="invisible">bf-a301-8d3a75549e33</span></a></p><p><a href="https://linuxrocks.online/tags/tuxedo" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tuxedo</span></a> <a href="https://linuxrocks.online/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://linuxrocks.online/tags/linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linux</span></a></p>
Tonton Fred<p><strong>DGLFI épisode 55 : le bilan de la "quatrième saison".</strong></p> <p><a href="https://peertube.pcservice46.fr/videos/watch/99c657b8-f3a2-4cd8-9f9e-d32eccee8bdc" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peertube.pcservice46.fr/videos</span><span class="invisible">/watch/99c657b8-f3a2-4cd8-9f9e-d32eccee8bdc</span></a></p>
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/data" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>data</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>datadon</span></a></span> 🧵</p><p>Accuracy! To counter regression dilution, a method is to add a constraint on the statistical modeling.<br>Regression Redress restrains bias by segregating the residual values.<br>My article: <a href="http://data.yt/kit/regression-redress.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">data.yt/kit/regression-redress</span><span class="invisible">.html</span></a></p><p><a href="https://hachyderm.io/tags/bias" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bias</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIDev</span></a> <a href="https://hachyderm.io/tags/modelEvaluation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelEvaluation</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/dataLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataLearning</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/correctionRatio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>correctionRatio</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://hachyderm.io/tags/accuracy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>accuracy</span></a> <a href="https://hachyderm.io/tags/RegressionRedress" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RegressionRedress</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/RStats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RStats</span></a></p>
Teddy / Domingo (🇨🇵/🇬🇧)<p>The best <span class="h-card" translate="no"><a href="https://framapiaf.org/@linux" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>linux</span></a></span> <a href="https://framapiaf.org/tags/distros" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distros</span></a> for beginners are as easy to use as <a href="https://framapiaf.org/tags/MacOS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MacOS</span></a> or <a href="https://framapiaf.org/tags/Windows" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Windows</span></a> -- really.<br>The best <a href="https://framapiaf.org/tags/Linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Linux</span></a> <a href="https://framapiaf.org/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> for beginners in 2025: Expert tested and reviewed<br><a href="https://www.zdnet.com/article/best-linux-desktops-for-beginners/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">zdnet.com/article/best-linux-d</span><span class="invisible">esktops-for-beginners/</span></a></p>
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/data" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>data</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>datadon</span></a></span> 🧵</p><p>How to assess a statistical model?<br>How to choose between variables?</p><p>Pearson's <a href="https://hachyderm.io/tags/correlation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>correlation</span></a> is irrelevant if you suspect that the relationship is not a straight line.</p><p>If monotonic relationship:<br>"<a href="https://hachyderm.io/tags/Spearman" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Spearman</span></a>’s rho is particularly useful for small samples where weak correlations are expected, as it can detect subtle monotonic trends." It is "widespread across disciplines where the measurement precision is not guaranteed".<br>"<a href="https://hachyderm.io/tags/Kendall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Kendall</span></a>’s Tau-b is less affected [than Spearman’s rho] by outliers in the data, making it a robust option for datasets with extreme values."<br>Ref: <a href="https://statisticseasily.com/kendall-tau-b-vs-spearman/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticseasily.com/kendall-t</span><span class="invisible">au-b-vs-spearman/</span></a></p><p><a href="https://hachyderm.io/tags/normality" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>normality</span></a> <a href="https://hachyderm.io/tags/normalDistribution" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>normalDistribution</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIDev</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/modelEvaluation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelEvaluation</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/dataLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataLearning</span></a> <a href="https://hachyderm.io/tags/featureEngineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>featureEngineering</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/correctionRatio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>correctionRatio</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/Pearson" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pearson</span></a> <a href="https://hachyderm.io/tags/bias" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bias</span></a> <a href="https://hachyderm.io/tags/regressionRedress" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>regressionRedress</span></a> <a href="https://hachyderm.io/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a></p>
David J. Atkinson<p><span class="h-card" translate="no"><a href="https://saturation.social/@clive" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>clive</span></a></span> <br>This suggests that one could detect <a href="https://c.im/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> written material by comparing the word distribution to that of human writing, assuming a large enough sample. It may also be true that the word distributions from various <a href="https://c.im/tags/LLM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLM</span></a> models are different from each, in which case you now have an AI fingerprint. Comparing multiple <a href="https://c.im/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> is relatively straightforward with <a href="https://c.im/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a>.</p>
:rss: Hacker News<p>Interview of Robert Shingledecker, Tiny Core Linux and DSL Developer (2009)<br><a href="https://distrowatch.com/weekly.php?issue=20090323#feature" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">distrowatch.com/weekly.php?iss</span><span class="invisible">ue=20090323#feature</span></a><br><a href="https://rss-mstdn.studiofreesia.com/tags/ycombinator" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ycombinator</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/distrowatch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distrowatch</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/linux" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>linux</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/android" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>android</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/bsd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bsd</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/unix" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>unix</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/distro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distro</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/distros" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distros</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/ubuntu" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ubuntu</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/debian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>debian</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/suse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>suse</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/opensuse" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opensuse</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/fedora" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fedora</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/red_hat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>red_hat</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/centos" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>centos</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/mageia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mageia</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/knoppix" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>knoppix</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/gentoo" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gentoo</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/slackware" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>slackware</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/freebsd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>freebsd</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/openbsd" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>openbsd</span></a></p>
Eric Maugendre<p>In 2016, the American Statistical Association <a href="https://hachyderm.io/tags/ASA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ASA</span></a> made a formal statement that "a p-value, or statistical significance, does not measure the size of an effect or the importance of a result".</p><p>It also stated that "p-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone".</p><p><a href="https://hachyderm.io/tags/nullHypothesis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>nullHypothesis</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://hachyderm.io/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://hachyderm.io/tags/vectors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vectors</span></a> <a href="https://hachyderm.io/tags/data" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>data</span></a> <a href="https://hachyderm.io/tags/bigData" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigData</span></a> <a href="https://hachyderm.io/tags/matrices" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>matrices</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistics</span></a></p>