Serhii Nazarovets<p>New <a href="https://mstdn.science/tags/preprint" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>preprint</span></a> 📢 - Can <a href="https://mstdn.science/tags/OpenAlex" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAlex</span></a> compete with <a href="https://mstdn.science/tags/Scopus" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Scopus</span></a> in bibliometric analysis?</p><p>👉 <a href="https://arxiv.org/abs/2502.18427" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2502.18427</span><span class="invisible"></span></a></p><p><span class="h-card" translate="no"><a href="https://mastodon.social/@OpenAlex" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>OpenAlex</span></a></span> has broader coverage and shows higher correlation with certain expert assessments.</p><p>At the same time, it has issues with metadata completeness and document classification.</p><p>❗ Most intriguingly: it turns out that raw <a href="https://mstdn.science/tags/citation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>citation</span></a> counts perform just as well, and in some cases even better, than normalized indicators, which have long been considered the standard in <a href="https://mstdn.science/tags/scientometrics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scientometrics</span></a>.</p>